HIGHLIGHTED TOPIC Lung Growth and Repair Hypoxia-responsive growth factors upregulate periostin and osteopontin expression via distinct signaling pathways in rat pulmonary arterial smooth muscle cells
نویسندگان
چکیده
Li, Peng, Suzanne Oparil, Wenguang Feng, and Yiu-Fai Chen. Hypoxia-responsive growth factors upregulate periostin and osteopontin expression via distinct signaling pathways in rat pulmonary arterial smooth muscle cells. J Appl Physiol 97: 1550–1558, 2004. First published April 30, 2004; 10.1152/japplphysiol.01311.2003.— This study tested the hypothesis that expression of the novel adhesion molecule periostin (PN) and osteopontin (OPN) is increased in lung and in isolated pulmonary arterial smooth muscle cells (PASMCs) in response to the stress of hypoxia and explored the signaling pathways involved. Adult male rats were exposed to 10% O2 for 2 wk, and growth-arrested rat PASMCs were incubated under 1% O2 for 24 h. Hypoxia increased PN and OPN mRNA expression in rat lung. In PASMCs, hypoxia increased PN but not OPN expression. The hypoxia-responsive growth factors fibroblast growth factor-1 (FGF-1) and angiotensin II (ANG II) caused doseand time-dependent increases in PN and OPN expression in PASMCs. FGF-1-induced PN expression was blocked by the FGF-1 receptor antagonist PD-166866 and by inhibitors of phosphatidylinositol 3-kinase (PI3K) (LY-294002, wortmannin), p70S6K (rapamycin), MEK1/2 (U-0126, PD-98059), and p38MAPK (SB-203580) but not of JNK (SP-600125). ANG II-induced PN expression was blocked by the AT1-receptor antagonist losartan and by inhibitors of PI3K and MEK1/2. In contrast, FGF-1-induced OPN expression was blocked by inhibitors of JNK or MEK1/2 but not of PI3K, p70S6K, or p38MAPK. Activation of p70S6K and p38MAPK by anisomycin robustly stimulated PN but not OPN expression. This study is the first to demonstrate that growth factor-induced expression of PN in PASMCs is mediated through PI3K/p70S6K, Ras/MEK1/2, and Ras/p38MAPK signaling pathways, whereas the expression of OPN is mediated through Ras/MEK1/2 and Ras/JNK signaling pathways. These differences in signaling suggest that PN and OPN may play different roles in pulmonary vascular remodeling under pathophysiological conditions.
منابع مشابه
ANP signaling inhibits TGF-beta-induced Smad2 and Smad3 nuclear translocation and extracellular matrix expression in rat pulmonary arterial smooth muscle cells.
Atrial natriuretic peptide (ANP) and transforming growth factor (TGF)-beta play important counterregulatory roles in pulmonary vascular adaptation to chronic hypoxia. To define the molecular mechanism of this important interaction, we tested whether ANP-cGMP-protein kinase G (PKG) signaling inhibits TGF-beta1-induced extracellular matrix (ECM) expression and defined the specific site(s) at whic...
متن کاملFibroblast growth factor mediates hypoxia-induced endothelin-- a receptor expression in lung artery smooth muscle cells.
We have previously demonstrated that endothelin (ET)-1 and its subtype A receptor (ET-AR) expression are increased in lung under hypoxic conditions and that activation of ET-AR by ET-1 is a major mediator of hypoxia-induced pulmonary hypertension in the rat. The present study tested the hypothesis that the hypoxia-responsive tyrosine kinase receptor-activating growth factors fibroblast growth f...
متن کاملHypoxia induces downregulation of PPAR-γ in isolated pulmonary arterial smooth muscle cells and in rat lung via transforming growth factor-β signaling.
Chronic hypoxia activates transforming growth factor-β (TGF-β) signaling and leads to pulmonary vascular remodeling. Pharmacological activation of peroxisome proliferator-activated receptor-γ (PPAR-γ) has been shown to prevent hypoxia-induced pulmonary hypertension and vascular remodeling in rodent models, suggesting a vasoprotective effect of PPAR-γ under chronic hypoxic stress. This study tes...
متن کاملDominant negative mutation of the TGF-beta receptor blocks hypoxia-induced pulmonary vascular remodeling.
The present study utilized a novel transgenic mouse model that expresses an inducible dominant negative mutation of the transforming growth factor (TGF)-beta type II receptor (DnTGFbetaRII mouse) to test the hypothesis that TGF-beta signaling plays an important role in the pathogenesis of chronic hypoxia-induced increases in pulmonary arterial pressure and vascular and alveolar remodeling. Nine...
متن کاملPulmonary hypertension due to BMPR2 mutation: a new paradigm for tissue remodeling?
Genetic studies in familial pulmonary arterial hypertension (FPAH) have revealed heterozygous germline mutations in the bone morphogenetic protein type II receptor (BMPR-II), a receptor for the transforming growth factor (TGF)-beta/bone morphogenetic protein (BMP) superfamily. PAH is characterized by intense remodeling of small pulmonary arteries by myofibroblast and smooth muscle proliferation...
متن کامل